Gregory C. Rogers, PhD

Associate Professor

E-Mail Address: 
Phone Number: 
520-626-3925
Fax: 
520-626-3764
Short Bio: 

Primary Appointment:

Cellular and Moleuclar Medicine

Degrees:

1999 - Ph.D., University of California at Davis, Cell and Developmental Biology

1994 - B.A., University of Rochester, Biology

Laboratory:

Greg Rogers' lab website

Research Information
Research Program: 
3. Cancer Biology
Member Status: 
Member
Year of Membership Acceptance: 
2009
Summary of Research Activity: 

My laboratory is interested in the molecular mechanisms cells use to maintain stability of their genomes. This is medically relevant because genomic instability can promote tumorigenesis. During mitosis, cells face particular risk, as errors in chromosome segregation can lead to chromosome instability (CIN) which is characterized, in part, by an abnormal chromosome complement (known as aneuploidy). Indeed, aneuploidy promotes malignant transformation and is an underlying cause of birth defects. Mitotic spindles are used to faithfully segregate chromosomes into daughter cells and, for this to occur properly, it is critical that cells assemble spindles with a bipolar fusiform-shape. Cells control spindle shape using centrosomes, tiny organelles that nucleate the microtubule cytoskeleton and organize the two spindle poles. Normally, cells contain a single centrosome which duplicates once per cell cycle, thus ensuring that cells enter mitosis with only two centrosomes to build a bipolar spindle. Cancer cells, however, overduplicate their centrosomes, which leads to multipolar spindle formation and chromosome instability. In fact, most human tumors contain cells with elevated centrosome numbers and aneuploid genomes. Importantly, the fundamental mechanisms that cells use to control their centrosome number are unclear, nor is it understood how this regulation goes awry in cancer. My work centers on characterizing a particular pathway (the Plk4 pathway) to control the biogenesis of centrosomes. This pathway utilizes both phosphorylation and ubiquitin-mediated proteolysis as regulatory mechanisms in a complex signaling pathway to control the biogenesis of centrosomes.

Selected Publications: 

Nye, J., Buster, D.W. and Rogers, G.C.  2014.   The use of cultured Drosophila cells for studying the microtubule cytoskeleton.  Methods in Molecular Biology.  1136, 81-101.

Klebba, J.E., Buster, D.W., Nguyen, A.L., Swatkoski, G., Gucek, M., Rusan, N.M., and Rogers, G.C.  2013.  Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron.  Current Biology.  23, 2255-2261.

Smith, H. F., Roberts, M.A., Nguyen, H.Q., Peterson, M., Hartl, T.A., Wang, X.J., Klebba, J.E., Rogers, G.C. and Bosco, G.  2013.  Maintenance of interphase chromosome compaction and homolog pairing in Drosophila is regulated by the condensin Cap-H2 and its partner Mrg15.  Genetics.  195, 127-46.

Buster, D.W., Daniel, S.G., Nguyen, H.Q., Windler, S.L., Skwarek, L.C., Peterson, M., Roberts, M., Meserve, J.H., Hartl, T., Klebba, J.E., Bilder, D., Bosco, G. and Rogers, G.C.  2013.  SCFSlimb ubiquitin-ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2.  Journal of Cell Biology.  201, 49-63.

Brownlee, C.W. and Rogers, G.C.  2013.  Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification.  Cellular and Molecular Life Sciences.  70, 1021-1034.

Mennella, V., Keszthelyi, B., McDonald, K.L., Chhun, B., Kan, F., Rogers, G.C., Huang, B. and Agard, D.A.  2012.  Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization.  Nature Cell Biology. 14, 1159-1168.

Slevin, L.K., Nye, J., Pinkerton, D.C., Buster, D.W., Rogers, G.C. and Slep, K.C. 2012. The structure of the Plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure. 20, 1905-17.

Roberts, D.M., Pronobis, M.I., Alexandre, K.M., Rogers, G.C., Poulton, J.S., Schneider, D.E., Jung, K.C., McKay, D.J. and Peifer M.  2012. Defining components of the ß-catenin destruction complex and exploring its regulation and mechanisms of actin during development. PLoS One. 7(2):e31284. doi: 10.1371

Brownlee, C.W., Klebba, J.E., Buster, D.W. and Rogers, G.C. 2011. The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification.  Journal of Cell Biology. 195, 231-243.       

Taylor, S.M., Nevis, K.R., Park, H.L., Rogers, G.C., Rogers, S.L., Cook, J.G. and Bautch, V.L.  2010. Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels. Blood. 116, 3108-3117.

Buster, D.W., Nye, J., Klebba, J.E. and Rogers, G.C.  2010.  Preparation of Drosophila S2 cells for light microscopy.  Journal of Visualized Experiments.   doi: 10.3791/1982.

Rogers, G.C.  2010.  More than just microtubules: actin-dynamics separate interphase-prophase centrosomes.  Current Biology.  20, R364-R366.

Rath, U., Rogers, G.C., Tan, D., Gomez-Ferreria, M.A., Buster, D.W., Sosa, H.J. and Sharp, D.J.  2009.  The Drosophila kinesin-13, KLP59D, impacts Pacman and Flux-based chromosome movement.  Molecular Biology of the Cell.  20, 4696-4705.

Rusan NM, Rogers GC. 2009. Centrosome function: Sometimes less is more. Traffic, 10, 472-481.

Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL. Jan 2009. The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol, 184:225-39

Hall, J.R., Lee, H.O., Bunker, B.D., Dorn, E.S., Rogers, G.C., Duronio, R.J. and Cook, J.G. 2008. Cdt1 and Cdc6 are destabilized by rereplication-induced DNA damage. Journal of Biological Chemistry. 283, 25356-63.

Rogers GC, Rusan NM, Peifer M, Rogers SL. Jul 2008. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol Biol Cell, 19:3163-78

Rogers SL, Rogers GC. Dec 2007. Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy. Nat Protoc, 3:606-11

Zhang D, Rogers GC, Buster DW, Sharp DJ. Apr 2007. Three microtubule severing enzymes contribute to the "Pacman-flux" machinery that moves chromosomes. J Cell Biol, 177:231-42

Kim H, Ling SC, Rogers GC, Kural C, Selvin PR, Rogers SL, Gelfand VI. Feb 2007. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J Cell Biol, 176:641-51

Rogers GC, Rogers SL, Sharp DJ. Mar 2005. Spindle microtubules in flux. J Cell Sci, 118:1105-16

Mennella V, Rogers GC, Rogers SL, Buster DW, Vale RD, Sharp DJ. Mar 2005. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nat Cell Biol, 7:235-45

Sharp, D.J. and Rogers, G.C.  (2004)  A Kin-I-dependent Pacman-flux mechanism for anaphase A.  Cell Cycle.  3, 707-710.

Rogers GC, Rogers SL, Schwimmer TA, Ems-McClung SC, Walczak CE, Vale RD, Scholey JM, Sharp DJ. Jan 2004. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature, 427:364-70

Kwon, M., Brust-Mascher, I., Morales-Mulia, S., Rogers, G.C., Sharp, D.J. and Scholey, J.M.  (2004)  The chromokinesin, KLP3A, drives mitotic spindle pole separation during prometaphase and anaphase, and facilitates chromatid motility.  Molecular Biology of the Cell.  15, 219-233.

Rogers SL, Rogers GC, Sharp DJ, Vale RD. Sep 2002. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol, 158:873-84

Rogers, G.C., Rogers, S.L., Sharp, D.J. and Scholey, J.M.  (2002)  Dynein.  Wiley.  Encyclopedia of Molecular Medicine.  Vol. 2, pp 1108-1116 (New York: John Wiley & Sons).

Scholey JM, Rogers GC, Sharp DJ. Jul 2001. Mitosis, microtubules, and the matrix. J Cell Biol, 154:261-6

Chui, K.K., Rogers, G.C., Kashina, A.M., Wedaman, K.P., Sharp, D.J., Nguyen, D.T. and Scholey, J.M.  (2000)  Roles of two homotetrameric kinesins in sea urchin embryonic cell division.  Journal of Biological Chemistry.  275, 38005-38011.

Sharp DJ, Rogers GC, Scholey JM. Dec 2000. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol, 2:922-30

Sharp DJ, Rogers GC, Scholey JM. Sep 2000. Microtubule motors in mitosis. Nature, 407:41-7

Rogers GC, Chui KK, Lee EW, Wedaman KP, Sharp DJ, Holland G, Morris RL, Scholey JM. Aug 2000. A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division. J Cell Biol, 150:499-512

Sharp, D.J., Rogers, G.C. and Scholey, J.M.  (2000)  Roles of motor proteins in building microtubule-based structures: a basic principle of cellular design.  Biochimica et Biophysica Acta.  1496, 128-141.

Sharp, D.J., Brown, H.M., Kwon, M., Rogers, G.C., Holland, G. and Scholey, J.M.  (2000)  Functional coordination of three mitotic motors in Drosophila embryos.  Molecular Biology of the Cell.  11, 241-253.

Rogers, G.C., Hart, C.L., Wedaman, K.P. and Scholey, J.M.  (1999)  Identification of Kinesin-C, a calmodulin-binding carboxy-terminal kinesin in animal (Strongylocentrotus purpuratus) cells.  Journal of Molecular Biology.  294, 1-8.

Kashina, A.S., Rogers, G.C. and Scholey, J.M.  (1997)  The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation.  Biochimica et Biophysica Acta.  1357, 257-271.